
217

0022-4715/04/0400-0217/0 © 2004 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 115, Nos. 1/2, April 2004 (© 2004)

Liapunov Multipliers and Decay of Correlations in
Dynamical Systems*

* Dedicated to Gianni Jona-Lasinio in gratitude for his many encouragements.

P. Collet1 and J.-P. Eckmann2

1 Centre de Physique Théorique, Laboratoire CNRS UMR 7644, École Polytechnique,
F-91128 Palaiseau Cedex, France.
2Département de Physique Théorique et Section de Mathématiques, Université de Genève,
CH-1211 Genève 4, Switzerland.

Received March 4, 2003; accepted July 10, 2003

The essential decorrelation rate of a hyperbolic dynamical system is the decay
rate of time-correlations one expects to see stably for typical observables once
resonances are projected out. We define and illustrate these notions and study
the conjecture that for observables in C1, the essential decorrelation rate is never
faster than what is dictated by the smallest unstable Liapunov multiplier.
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1. INTRODUCTION

The purpose of this paper is a discussion of the relation between the decay
of time-correlations and the Liapunov exponents of dynamical systems. It
is well-known that if a system has vanishing Liapunov exponents, in
general the decay of correlations can be arbitrarily slow. Here, we study the
case when the Liapunov exponents are all different from 0. The decay of
time-correlations in a dynamical system depends in general on the type of
observable one considers. We will explain below why, in our view, the class
C1 of once differentiable observables is a natural and useful choice. What-
ever the choice, it implies a notion of essential decorrelation rate, also to be
defined below. Its intuitive meaning is perhaps best understood in terms of
resonances or improvable decorrelation rates. (15, 16) These are rates which will
be seen usually for any randomly picked observable and which are slower



than the essential ones. But they are improvable in the following sense. For
any E > 0, there is a finite dimensional subspace of such observables, and if
we take any other observable in the complement of this subspace, we will
see the essential decorrelation rate within E. It is precisely called essential,
because no further finite dimensional restriction of observables will lead to a
faster decorrelation rate.
We will first define with mathematical precision an essential decorrela-

tion radius ress which is the inverse of the essential decorrelation rate less.
We will then show by means of some examples that systems with improv-
able decorrelation rates really exist. We then address the question of the
essential decorrelation radius. We will study for observables in C1 and for
several expanding systems the validity of the inequality

ress — 1/less \ 1/lmin, (1.1)

where log lmin is the smallest positive Liapunov multiplier.3 We also argue

3 The Liapunov exponent is the logarithm of the Liapunov multiplier.

that in many cases the inequality above is strict, so that the (essential)
decay rate of correlations is even slower than what is suggested by the
smallest positive Liapunov multiplier.4

4 It is somewhat anti-intuitive that the lowest and not the largest Liapunov exponent matters,
when compared with the idea that Liapunov exponents are separation rates, but the reader
should note that decay rates are really infinite time quantities, and the fast local separation
of orbits only works for a short time, and only for a few avoidable observables.

Our paper deals thus with lower bounds not only on the essential
spectrum, but also on the essential decorrelation radius. For related work,
see ref. 17.

2. SETUP

We consider throughout a smooth manifoldM of dimension d, and a
(piecewise) smooth map f of M into itself. The differential of f (a d×d
matrix) is denoted Df, and Df(x) or Df|x when evaluated at the point x.
Two quantities of interest in ‘‘chaotic’’ systems are the Liapunov multipliers
and the correlation functions. The Liapunov multipliers are obtained by
considering first the matrices

Ln(x)=Df(fn−1(x)) ·Df(fn−2(x)) · · ·Df(x) — D
n−1

i=0
Df(f i(x)).
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By Oseledec’ theorem, given an invariant measure n, the Liapunov mul-
tipliers are then the eigenvalues of the matrix

lim
nQ.
(Ln(x)g Ln(x))

1
2n, (2.1)

(which exists n almost everywhere).5 If the system is in addition ergodic

5We always write l for the Liapunov multiplier, and log l for the corresponding Liapunov
exponent.

with respect to the invariant measure, then these eigenvalues are n-almost
surely independent of x. Note that the Liapunov multipliers will in general
depend on n when there are several invariant measures. We will call these
multipliers6

6 They depend on the invariant measure.

l1 \ l2 \ · · · \ ld.

Recall also that for SRB measures the limit in (2.1) exists Lebesgue
almost surely (in the basin of the measure) and not only on the support of
the measure n which may be of Lebesgue measure zero.
A second quantity of interest are correlation functions. Consider two

observables, F and G, which are functions on M taking real values. Here,
and throughout the paper, we will assume that F and G have zero mean.
Then we can form the correlation functions

Sk(x)= lim
nQ.

1
n
C
n−1

j=0
F(f j+k(x)) G(f j(x)).

Again, Sk(x) is Lebesgue almost surely independent of x and is also equal
to

Sk=F dm(x) F(fk(x)) G(x),

where m is the SRB measure (assuming it exists).
A question of interest is the relation between the rate of decay of Sk as

kQ. and the Liapunov multipliers. A tempting idea is to argue that since
the orbits seem to separate at a rate l1 (per unit time) the observables
should decorrelate like

|Sk | N
C
lk1
, (2.2)
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for some constant C. While this property is in a way true for short times
(small k) because generally there is a component of the observables which
‘‘feels’’ the fast rate of the largest Liapunov multiplier, the purpose of this
paper is to show that (2.2) does not hold asymptotically in general.
First of all, closer scrutiny of the separation argument given above

indicates that the expected behavior of Sk should be dictated not by the
largest Liapunov multiplier, but rather by the smallest above 1:

|Sk | N
C

lkmin
, (2.3)

where7

7We do not consider systems with Liapunov multipliers equal to 1, where it is known that the
decorrelation rate may not even be exponential.

lmin=min{li: li > 1}. (2.4)

We will see that (2.3) holds for certain special examples, but for a general
map Eq. (2.3) cannot be an equality for generic observables in C1, even if we
avoid the resonances. Namely, we expect for maps f with non-constant
derivative and for observables in C1 an inequality

|Sk | N
C

lkess
, (2.5)

with 1 < less < lmin: In general, the decorrelation is slower than C/lkmin.
Furthermore, less is a much stronger barrier to decay than the resonances:
Only a very radical restriction of the observables (to a subspace of C1 with
infinite codimension) will in general lead to a faster decay.
The purpose of this paper is to clarify the issues related to these ques-

tions.

3. THE ESSENTIAL DECORRELATION RADIUS

In this section we define the essential decorrelation radius ress. The
essential decorrelation rate less is then defined by

less=1/ress,

so that the correlation functions Sk will basically decay like l−kess=rkess.
The definition of ress depends on two Banach8 spaces X and Y, with X

8Hilbert spaces are not adequate since we work with functions in C1.

a subspace of the dual of Y, The reader should think of X and Y as the
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Banach space of C1 functions with the norm ||h||=supx |h(x)|+supx |Dh(x)|,
but we will need more complicated spaces later. We denote by O ,P the con-
tinuous bilinear form on Y×X which is the restriction of the pairing of Y
with its dual.

Definition 3.1. Let U be a bounded linear operator on X. We
define the essential decorrelation radius of U on X, Y by

ress(X, Y, U)= inf
CodimM<.
CodimMŒ <.

lim sup
nQ.

1 sup
x ¥M0{0}, y ¥MŒ0{0}

|Oy, UnxP|
||x|| ||y||
21/n. (3.1)

Remark. The reason we want the space X to be invariant under U is
to make connection later on with the spectral radius. This will force us to
use spaces X whose definitions are a little involved. Although such a
problem does not seem to appear in the definition of the correlation func-
tion, it is hidden in the duality relation between the two observables.

The idea of Definition 3.1 is to peal-out the various finite dimensional
spectral subspaces corresponding to eigenvalues outside of the essential
spectral radius.
The essential spectral radius sess of U on X can be defined in many

equivalent ways, see, e.g., ref. 5, p. 44. For our purpose the following one
will be used (re2(U) in ref. 5):

Definition 3.2. Let U be a continuous linear operator on X. We
define the essential spectral radius by

sess(X, U)=sup{|l|: dim Ker(U−l1)=. or (U−l1) X is not closed},
(3.2)

and the point-essential spectral radius by

sp−ess(X, U)=sup{|l|: l ¥ C is an accumulation point of eigenvalues

or an eigenvalue of infinite multiplicity}. (3.3)

Remark. Using spectral projections, one finds always ress(X, Y, U) [
sess(X, U).

Theorem 3.3. Let U be a continuous linear operator on X. If
X … Yg, then

ress(X, Y, U) \ sp−ess(X, U). (3.4)
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Remark. It would be much nicer if we knew that ress(X, Y, U) \
sess(X, U). Some of the difficulties of this paper would disappear, and the
considerations of Sections 8 and 9 would immediately give the inequality
(2.5). While the inequality ress(X, Y, U) \ sess(X, U) is not true for general
spaces X and Y, we will get a relation using the point spectrum when the
spaces X and Y are not ‘‘very different’’ (2.5). Thus, Theorem 3.3 is still
somewhat useful because information on sp−ess is relatively easy to get at.
For those U and X we will consider, we shall find sp−ess(X, U)=
sess(X, U), so that in the end, we still have the more useful inequality
ress(X, Y, U) \ sess(X, U) in those cases.

Proof of Theorem 3.3. We first use the following

Lemma 3.4. With the notations of Definition 3.1 one has the iden-
tity

inf
CodimM<.
CodimMŒ <.

lim sup
nQ.

1 sup
x ¥M0{0}, y ¥MŒ0{0}

|Oy, UnxP|
||x|| ||y||
21/n

= inf
CodimM<., M closed
CodimMŒ <., MŒ closed

lim sup
nQ.

1 sup
x ¥M0{0}, y ¥MŒ0{0}

|Oy, UnxP|
||x|| ||y||
21/n. (3.5)

Remark. The proof of this lemma will be given in the Appendix. The
problem of non-closed subspaces is a well-known nuisance in controlling
intersection, see, e.g., ref. 8, footnote 2, p. 132. The above lemma helps
avoiding these esoteric problems.

We consider a complex number l ] 0 together with a sequence (lj) of
complex numbers converging to l (some terms of the sequence and possibly
infinitely many may be equal to l), which are eigenvectors of U in X asso-
ciated to the sequence of independent eigenvectors (ej). We claim that
ress \ |l|. To prove this we will show that for any subspaces M …X and
MŒ … Y, both of finite codimension, we have

|l| [ lim sup
nQ.

1 sup
x ¥M, y ¥MŒ

|Oy, UnxP|
||y|| ||x||
21/n. (3.6)

By Lemma 3.4, it is enough to show this for closed subspaces M and MŒ.
Let E > 0 and denote by s and sŒ the codimensions of M and MŒ, respec-
tively. Let W be a subspace generated by s+sŒ+1 vectors among the infi-
nite sequence (ej) with respective eigenvalues of modulus larger than |l|− E.
From our hypothesis, this is always possible. We have dim(W 5M) \
sŒ+1, see ref. 8, problem 1.42, p. 142.
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From ref. 8, Lemma 1.40, p. 141 we conclude that (in Yg) one has
sŒ=dimMŒ+ and therefore, since X … Yg by assumption, we find

W 5M ¼M −+.

This implies that there are a w ¥W 5M and a v ¥MŒ such that Ov, wP ] 0.
Therefore, there is at least one ea among those generating W for which
Ov, eaP ] 0. Since the associated eigenvalue la satisfies |la | \ |l|− E, we get

lim sup
nQ.

1 sup
x ¥M
y ¥MŒ

|Oy, UnxP|
||y|| ||x||
21/n \ lim sup

nQ.

1 |Ov, UneaP|
||v|| ||ea ||
21/n=|la | \ |l|− E.

We conclude that for any E > 0,

ress \ |l|− E.

Since E > 0 is arbitrary, we conclude ress \ |l| as asserted. Theorem 3.3
follows immediately from the definition of sp−ess.

4. BALADI MAP IN 1 DIMENSION

In this section we focus on resonances, by giving a 1-dimensional
example. In Section 5 we give a 2-dimensional, area-preserving example
and in Section 7 we show how this example can be generalized to unequal
slopes. This provides then an example with resonances and for which the
decay rate is not given by 1/lmin, but by 1/less as explained in the Intro-
duction and in Section 2.

Fig. 1. The graph of the Baladi map.
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Since there is only one Liapunov multiplier in dimension 1, we shall
write l instead of lmin. There are many maps of the interval with a slope of
constant modulus l > 1, which are Markov and which have resonances in
the correlation function. By a systematic search, Baladi (1) found the
simplest such map, whose partition has only four pieces. The map (which
we will call f) is drawn in Fig. 1 and is defined by

f(x)=˛l(x−xc)+1, if x [ xc,
−l(x−xc)+1, if x \ xc,

where xc=
2l2

1+l+
1−2l2

l
2 . Note that it has a slope ±l, where l > 1. Baladi

obtained l as follows: If we call P1,..., P4 the four pieces of the partition of
[0, 1] as shown on the bottom of Fig. 1, we see that f(P1)=P2 2 P3,
f(P2)=f(P3)=P4, and f(P4)=P1 2 P2 2 P3. Therefore, the transition
matrix M (the Markov matrix) defined by Mi, j=1 if Pj … f(Pi) and zero
otherwise is given by:

M=R
0 0 0 1
1 0 0 1
1 0 0 1
0 1 1 0

S .
Its characteristic polynomial is

l4−2l2−2l,

and its eigenvalues are

l % 1.76929, lr, ± % −0.884846±i 0.58973, and 0.

The reader will check easily that the maximal eigenvalue is the right choice
of l. The correlation functions are given by

Sk=F dx F(x) G(fk(x)) h(x),

where the density h of the invariant measure (which is unique among the
absolutely continuous invariant measures) is given by

h(x)=˛
a — l2/N, if x < 2l2/(1+l) — x1,

b — l(1+l)/N, if 2l2/(1+l) < x < 2/l2 — x2,

c — 2(1+l)/N, if 2/l2 < x < 1,

(4.1)

224 Collet and Eckmann



Fig. 2. The density h of the invariant measure. The normalization factor is N=(2l3−l−2)/l2.

and N=(2l3−l−2)/l2 is a normalization (see Fig. 2). Changing variables
to y=f−1(x) one gets

Sk=F dy(Pk(Fh))(y) G(y),

where P is the Perron–Frobenius operator

(Pg)(y)= C
x: f(x)=y

g(x)
|fŒ(x)|

.

Note that since |fŒ(x)| — l for our example, the Perron–Frobenius operator
in this case equals l−1M when acting on functions which are constant on
the four pieces of the Markov partition. Therefore, on that space, its
eigenvalues are given by

1,
lr, ±

l
%
−0.884846±i 0.58973

1.76929
, and 0.

It follows that for generic observables the correlation functions decay like

|Sk | N C :
lr, ±

l
:k. (4.2)

This decay rate is slower than C |1/l|k because |lr, ± | % 1.06320. We illus-
trate these findings by numerical experiments in Figs. 3 and 4. The question
is now whether C ] 0. The matrix M has an eigenvector v1=(a, b, b, c) as
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Fig. 3. A numerical study of the correlation function Sk for the 1-dimensional Baladi map,
from 3 · 107 data points. The continuous graph is the theoretical curve, const. Re(lr,+/l)k.

Fig. 4. The same data as in 3 but now scaled vertically by |lr,+/l|−k. Superposed is the
(dashed) curve scaled by (1/l)−k which shows clearly the difference between the decay rate of
the resonance lr, ±/l and that of the inverse of the Liapunov multiplier which is 1/l.

defined in (4.1) corresponding to the eigenvalue l, a 2 dimensional eigen-
subspace corresponding to the eigenvalues lr, ± (spanned by some vectors
v2 and v3), and a fourth eigendirection v4=(0, 1, −1, 0) corresponding to
the eigenvalue 0. These are also eigenspaces for l−1P. We see that if the
function F·h does not have any component in the subspace spanned by v2 ,v3,
then C=0, and the decay of Sk is faster than described in (4.2).9 In all other

9 Strictly speaking, we have shown this only for functions which are constant on the pieces of
the partition. The proof of the general case is left to the reader.

cases, C ] 0 and (4.2) describes the relevant decay rate. We will therefore
say that lr, ±/l are resonances, see refs. 15 and 16, because they can be
avoided by choosing observables (with zero average) in a subspace of
codimension 2.
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5. A SKEW PRODUCT USING A BALADI MAP

Using the Baladi map f of the preceding section, we can construct a
new map, F which is area-preserving, invertible, hyperbolic, and has a
resonance (the same as in Section 4). The map is defined as in Fig. 5. In
formulas:

F(x, y)=(f(x), y/l+t(x)/N),

with l as in the previous section and where t is given by

t(x)=˛
2l2, if x <

2l2

1+l
,

1+l2, if
2l2

1+l
< x <

2l2+3l+1
l3+l2

,

0, if
2l2+3l+1

l3+l2
< x <

2
l2
,

0, if
2
l2
< x.

Since the first component of F is the 1-dimensional map f we discussed
above, we see that correlation functions for observables depending only on
x will show the resonances we found there. But the map is uniformly con-
tracting in the y direction, and furthermore, we have the explicit expression

Fn(x, y)=1fn(x), y
ln
+
;n−1
j=0 t(f

j(x))
ln−j+1
2 .

Fig. 5. The map F maps the left puzzle affinely onto the right puzzle, respecting the sha-
dings. Note that horizontally, all domains are stretched (by l) under the map, while the verti-
cal directions are squeezed (by l). Also note that the overall shape of the domain is that of the
graph of h of Fig. 2.
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If F depends only on x and is of the form F(x, y)=u(x) we get

F dx dy F(Fn(x, y)) G(x, y)=F dx u(fn(x)) v(x) dx,

where

v(x)=F dy G(x, y).

Therefore, by the results of the preceding section, for generic u and G ¥ C1

we get a rate of decay of correlations |lr, ±/l|. On the other hand, there is a
codimension two subspace of functions G such that the decay rate drops
down to 1/l.

6. ASYMMETRIC BAKER MAP WITH NON-TRIVIAL ESSENTIAL

DECORRELATION RADIUS

In this section we give examples of maps whose essential decorrelation
radius for observables in C1 larger than 1/lmin. These maps fa are usually
called asymmetric baker maps. These are maps from [0, 1]×[0, 1] which
are defined as follows. Fix a ¥ (0, 1). (See Fig. 6.) Then one defines

fa 1
x
y
2=˛1

1
a 0
0 a
21x
y
2 , if 0 [ x [ a,

1
1
1−a 0
0 1−a
21x
y
2+1

−a
1−a

a
2 , if a < x [ 1.

0 a 1
0

1

0

a

1
0

1

Fig. 6. An asymmetric baker map. The gray rectangle on the left is mapped (preserving
orientation) affinely on the gray rectangle on the right. The white rectangle is mapped on the
white rectangle.
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These maps have Jacobian equal to 1 everywhere, are invertible, and the
Lebesgue measure m is the only absolutely continuous invariant measure.
The inverse is given by

f−1a 1
x
y
2=˛1

a 0
0 1

a

21x
y
2 , if 0 [ y [ a,

11−a 0
0 1

1−a

21x
y
2+1 a−a

1−a

2 , if a < y [ 1.

The Liapunov multipliers of fa are the exponentials of

+ (m({y < a}) log a+m({y > a}) log(1−a)),

and so we find:

l−=1/l+=aa · (1−a)1−a [ 1.

Note that with our notation, lmin=l+.
We next study the decay of the correlation functions. Consider the two

observables:

F(x, y)=“xu(x), G(x, y)=x, (6.1)

with u(0)=u(1)=0, u \ 0, u – 0. Note that since F has zero average, it is
not necessary to impose that G has zero average. Then, with z=(x, y) we
find

Sk=F d2z F(fk(z)) G(z)=F d2z F(z) G(f−k(z))

=F d2z uŒ(x) G(f−k(z)).

When y is fixed, we let Iy be the horizontal segment Iy={(x, y): x ¥ [0, 1]}.
Note that f−k|Iy is regular, without discontinuities. Therefore, we can
integrate by parts and get

Sk=−F d2z u(x) “xG(f−k(z)) ·“x(f−k)1(z). (6.2)
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By construction “xG — 1 and thus we find with e1 — (
1
0) :

Sk=−F d2z u(x) “x(f−k)1(z)=−F d2z u(x) D(f−k)|z e1

=−F d2z u(x)

· exp 1 log a · C
k−1

j=0
qy < a(f−j(z))+log(1−a) · C

k−1

j=0
qy > a(f−j(z))2 .

Note that the exponential does not depend on the first component x of
z ¥ R2 and thus we can integrate over x and obtain

Sk=−F dy exp 1 log a · C
k−1

j=0
qy < a(f−j(z))+log(1−a) · C

k−1

j=0
qy > a(f−j(z))2 .

By an explicit computation we see that the integral over y equals

C
k−1

j=0

1k−1
j
2 a j(1−a)k−1−j exp(j log a+(k−1−j) log(1−a))

=C
k−1

j=0

1k−1
j
2 a j(1−a)k−1−j a j(1−a)k−1−j

=(a2+(1−a)2)k−1.

At this point one needs to show that enough functions F and G have
been constructed to really characterize the essential decorrelation radius.
This follows by a (simpler) application of the ideas of Section 10. Note,
however, that the basic ingredient will still be the integration by parts
formula (6.2). Leaving this problem aside, we get

|Sk | \ C(a2+(1−a)2)k \ Cl−kess ,

and

1/less \ a2+(1−a)2 \ aa(1−a)1−a=1/l+, (6.3)

with equality a2+(1−a)2=aa(1−a)1−a only in the case of uniform expan-
sion, a=1

2 (and the identity maps a=0, a=1). Thus, the decay rate is not
given by the inverse of the expanding Liapunov multiplier. (See Fig. 7.)
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Fig. 7. The upper curve shows the rates of decay 1/lmin=1/less=a2+(1−a)2 as a function
of a, and the lower curve shows 1/l+=aa(1−a)1−a. One can see that the decay is generally
slower than 1/l+=1/lmin.

7. AN ESSENTIAL DECORRELATION RADIUS ABOVE 1/l AND A

RESONANCE

In this section, we somewhat generalize the construction of Section 4
and give an example of a map of the interval which has a resonance lr with
|1/lr | > 1/less and for which also 1/less > 1/l. This map is obtained as a
perturbation of the Baladi map.
Consider four consecutive intervals I1,..., I4 in increasing order. We

consider a map f of I=I1 2 · · · 2 I4 into itself which is affine on each
interval and satisfies the (topological) Markov property

f(I1)=I2 2 I3,

f(I2)=I4,

f(I3)=I4,

f(I4)=I1 2 I2 2 I3.

We will denote by l1,..., l4 the lengths of the intervals, and by f1,..., f4 the
absolute value of the slope of f in each interval. In order to ensure the
above topological Markov property, some relations are required between
the lengths and the slopes, namely

l1f1=l2+l3,

l2f2=l4,

l3f3=l4,

l4f4=l1+l2+l3.

(7.1)
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In order to ensure the differentiability of the map at the fixed point, we will
assume that f3=f4. Note that the Baladi map is the particular case when
all slopes have equal modulus. If the slopes are given, the system (7.1) is
composed of four homogeneous equations in four unknowns (the lengths).
A necessary condition for the existence of a solution is the vanishing of the
determinant of the associated matrix, namely

f1f2f
2
3−f1f2−f1f3−f2−f3=0. (7.2)

Note that if all slopes are equal to l, then (7.2) is equivalent to the equa-
tion l4−2l2−2l=0 for the Baladi map. We can also write the above
relation as

f1=
f2+f3

f2f
2
3−f2−f3

.

For any choice of f2 and f3 sufficiently close to l, the above expression
defines a number f1 again close l which is therefore larger than one. We
can now choose l4 > 0 and define

l2=
l4
f2
, l3=

l4
f3
, l1=

l2+l3
f1
.

The last equation of (7.1) is automatically satisfied and we have an
obviously positive solution for the set of lengths which can be normalized
to ; i li=1.
Having constructed our maps, we now investigate the Perron–

Frobenius (PF) operator on the set of functions which are piecewise con-
stant on the atoms I1,..., I4 of the topological Markov partition. These
functions are in bijection with four vectors, and it is easy to verify that the
PF operator on these vectors is given by the matrix

P=R
0 0 0 1

f3

1
f1
0 0 1

f3

1
f1
0 0 1

f3

0 1
f2

1
f3
0

S .
The eigen-equation for this matrix is

t4−
t2

f3
1 1
f2
+
1
f3
2− t

f1f3
1 1
f2
+
1
f3
2=0.
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It follows easily from relation (7.2) that t=1 is a solution. Since t=0 is
also a solution, and by continuity, for f1,..., f3 near l, we must have a
resonance (close to lr, ± ) given by the solutions of

t2+t+1−
1
f3
1 1
f2
+
1
f3
2=0.

Thus, we have constructed maps f with both a resonance (when the fi are
close to l and chosen as indicated above) and with non-constant slope. From
the discussion of Section 8 we will get immediately

Proposition 7.1. There is a piecewise affine map of the interval
which has a resonance, and for which the essential decorrelation radius is
larger than 1/l, where l is the Liapunov multiplier of the map (for the
unique absolutely continuous invariant measure).

Furthermore, by continuity, when we are close enough to the Baladi
map, we find

|1/lr | > 1/less > 1/l=1/lmin.

Resonance and Sub-Optimal Decay. Using the above construc-
tion of a map with a resonance and non-constant slope, one can also con-
struct a skew product in a similar way as in Section 5 and obtain a hyper-
bolic map with a resonance and with decay which is slower than 1/lmin.

8. MAPS OF THE INTERVAL WITH ESSENTIAL DECORRELATION

RADIUS ABOVE 1/l

In this section we show that there are many maps of the interval (or
the circle) for which the essential decorrelation radius is larger than 1/l,
where l is the Liapunov exponent (for the absolutely continuous invariant
measure). Our results hold for maps with constant slope in each piece of
the Markov partition. They are based on the work of Collet and Isola (4)

who generalized the inequality 6.3 to more general 1-dimensional systems.
For these there is an explicit formula both for the Liapunov multiplier and
the essential spectral radius. For maps with constant slope in each piece the
methods of ref. 4 can be generalized to show that ress=sess. Therefore, the
equality between 1/l and the essential decorrelation radius only holds when
the map has the same (absolute value of the) slope everywhere.10

10 To some extent these formulas can be generalized to hyperbolic SRB systems as we will
show in Section 10.
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The Liapunov multiplier for any invariant measure m is given by

lm=exp 1F dm(y) log |fŒ(y)|2 . (8.1)

One has also for almost every x with respect to the measure m the more
physical form

lm= lim
nQ.

1D
n−1

j=0
|fŒ(f j(x))|2

1/n

= lim
nQ.
exp 11

n
C
n−1

j=0
log |fŒ(f j(x))|2 . (8.2)

The identity between (8.1) and (8.2) is based on the invariance and ergodi-
city of the measure m. The results of ref. 4 apply to 1-dimensional maps
with the following properties: There is a finite set of disjoint open intervals
I1,..., Ia whose closure forms a covering of [0, 1], and the closure of f(Ik)
is [0, 1] for every k. We also assume that f is C2 on each interval Ik with a
C2 extension to the closure, and y < |fŒ|Ik < yŒ with y > 1.11 Ergodicity

11Note that if all the slopes are positive, we are really talking about an a-fold map of the circle
to itself.

follows from the previous assumption, since the Lebesgue measure of
f−m(Ij) 2 Ii is not zero for every i, j and any m > 0. In this case, there is a
unique absolutely continuous invariant measure m, and using (8.1) we will
call l=lm for this measure.
There is detailed information on the essential spectrum:

Theorem 8.1 (ref. 4). The essential spectral radius sess, where L is
the Perron–Frobenius operator, is given by

sess(C1,L)=exp 1 lim
nQ.

1
n
log F dm(x) |(fn)Œ (x)|−12 . (8.3)

As we have seen in Section 3, the relevant quantity is sp−ess and not
sess. (See also ref. 11 for an early reference.) In ref. 4, it was shown that
modulo a compact operator, each point of the open disk of radius ress is an
eigenvalue. Closer inspection of the argument used there shows that for
maps with constant slope in each piece of the Markov partition the compact
piece mentioned above has no effect, since the boundary terms in ref. 4,
proof of Lemma 5 do not contribute. Therefore, one finds
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Theorem 8.2. The essential point spectral radius sp−essfor maps
with constant derivative in each piece of the Markov partition sp−ess is given
by

sp−ess(C1,L)=exp 1 lim
nQ.

1
n
log F dm(x) |(fn)Œ (x)|−12 . (8.4)

Conjecture 8.3. The identity (8.4) also holds for maps with variable
slope.

Remark. For the maps of Theorem 8.2, we therefore find the
inequality:

ress(C1, C1, U) \ exp 1 lim
nQ.

1
n
log F dm(x) |(fn)Œ (x)|−12 . (8.5)

This means that for such maps the decay of correlations is indeed related to
the Liapunov multiplier, and as we shall see below in Theorem 8.4, equality
only holds if all the slopes are the same (in modulus).

Proof of Theorem 8.2. We start with a setting which is somewhat
more general than the assumptions of Theorem 8.2. We consider a map f
of the unit interval which is piecewise C2 expanding and Markov, namely
there is a finite partition A of the interval by subintervals such that on
each atom f is monotone and C2 on the closure and such that the image of
each atom is the union of atoms (modulo closure). We also assume that
there is an integer k for which |fk−| > z > 1, and f is topologically mixing.
Under these assumptions it is well known that f has a unique absolutely
continuous invariant probability measure dm=h dx which is ergodic with
exponential decay of correlations (see ref. 2 and references therein). It is
also easy to verify that h is C1 on each atom ofA (with C1 extension to the
closure).
We will consider the decay of correlations in the space X of functions

which are C1 except maybe on the boundary of the atoms of A. For Y, we
use the space of C1 functions whose integral over each atom of A is equal
to zero. This insures that if g ¥ Y, we can find a function v ¥ C2 such that
vŒ=g and v vanishes on the boundary of the atoms ofA.
We will denote by An the partition Jn

0 f
−jA. If u and v are C1 func-

tions, we have

F u · vŒ p fn dm=F
uh
fn −
· vŒ p fnfn − dx= C

I ¥An−1

F
I

uh
fn −
· vŒ p fn ·fn − dx,
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and integrating by parts we get

F u · vŒ p fn dm=− C
I ¥An−1

F
I

1 uh
fn −
2 − v p fn dx

+ C
I ¥An−1

u(b−I ) h(b
−
I ) v(f

n(b−I ))
fn −(b−I )

− C
I ¥An−1

u(a+I ) h(a
+
I ) v(f

n(a+I ))
fn −(a+I )

, (8.6)

where the boundary points aI and bI are defined for I ¥An−1 by

Ī=[aI, bI].

Note that the two sequences (aI) and (bI) are identical except for the first
and last terms, and they are given by all the preimages of order up to n−1
of the boundaries of the atoms of A. In particular, for each I ¥An, fn(aI)
and fn(bI) belong to “A.
We now use the assumption of Theorem 8.2, namely that fŒ is con-

stant on the atoms of A. This implies that fn − is constant on the atoms of
An−1. Therefore, the first term of (8.6) is given by

− C
I ¥An−1

F
I

1 uh
fn −
2 − v p fn dx=−F (uh)Œ

fn −
v p fn dx=−FLn 1 (uh)Œ

fn −
2 v dx,

whereL is the Perron–Frobenius operator associated to f. Note that when
f is not constant on each atom of A, another term appears involving the
derivative of fn −. This term corresponds to a compact operator and did not
intervene in the computation of the essential spectral radius in ref. 4. It is
not clear how such a term would influence the present computation.
To complete the proof of Theorem 8.2 one first applies Theorem 3.3 to

the operator

U(g)=L 1 g
fŒ
2

in the space XŒ of functions which are piecewise C0 except possibly at the
boundary of the atoms ofA, and YŒ the space of C2 functions vanishing on
“A. One then applies Lemma 5 of ref. 4 to conclude that each point in the
open disk of the essential spectrum is an eigenvalue. (This Lemma has only
been proven for full Markov maps but the proof easily extends to the
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general Markov case.) Note that since h ] 0, multiplication by h is a
bounded invertible operator in X. This provides the desired lower bound if
there is only the first term in Eq. (8.6).
It remains to show that the last two terms are equal to zero, but this

follows at once from the requirement v(“A)=0.

Remark. The r.h.s. of (8.5) is a special value of the function

F(b)= lim
nQ.

1
n
log F dm(x) |(fn)Œ (x)|b,

at b=−1. The function F is convex, and its derivative at b=0 is the Lia-
punov exponent, by (8.2) (for the measure m after exchanging limits and
derivatives which can be justified in that case):

“b lim
nQ.

1
n
log F dm(x) |(fn)Œ (x)|b :

b=0
= lim
nQ.

1
n
log F dm(x) log |(fn)Œ (x)|

=log F dm(x) log |fŒ(x)|=log lm,

by the invariance of the measure m.
We next discuss the relation between less and l. The function F is

related to the pressure P of the observable −log fŒ (we refer to ref. 14 for
the definition) by the relation

F(b)=P((b−1) log |fŒ|), (8.7)

since P(−log |fŒ|)=0 and F is defined with respect to the SRB measure m.
The quantity 1/less is bounded from above by:

1/less [ lim
nQ.
sup
x

: 1
(fn)Œ (x)
:1/n [ sup

x

: 1
fŒ(x)
: .

And from below, it is bounded by 1/l, using Jensen’s inequality

F dn(x) exp(u(x)) \ exp 1F dn(x) u(x)2 ,
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which holds for any probability measure n:12

12 The third line uses again the invariance of the measure as in (8.2).

−log less= lim
nQ.

1
n
log F dm(x) |(fn)Œ (x)|−1

= lim
nQ.

1
n
log F dm(x) exp(− log |(fn)Œ (x)|)

\ lim
nQ.

1
n
log exp 1−F dm(x) log |(fn)Œ (x)|2

= lim
nQ.

1
n
1−F dm(x) C

n−1

j=0
log |fŒ(f j(x))|2

=−F dm(x) log |fŒ(x)|=−log l. (8.8)

Thus, we see from Theorem 8.1 that 1/less \ 1/l.
On the other hand, if |fŒ| is constant (and hence equal to l), we always

have less=l, as one sees immediately from (8.3). More interestingly, the
converse holds as well, modulo conjugations:

Theorem 8.4. One has l=less if and only if there exists a Y of
bounded variation for which

Y p f(x)=TlY(x), (8.9)

where Tl is a map with piecewise constant slope ±l. Furthermore, such a Y

exists if and only if

var(u) — lim
nQ.

1
n
F 1 C

n−1

j=0
u p f j2

2

dm (8.10)

vanishes for u=log |fŒ|− log l.

Another way to say this is:

Corollary 8.5. One has 1/less > 1/l if and only if u=log |fŒ|− log l

fluctuates in the sense that var(u) ] 0.

Proof of Theorem 8.4. The anchoring point of the proof will be the
variance. First of all, by ref. 10 the limit in (8.10) always exists. Take now
u=log |fŒ|− log l, where l=lm is again the Liapunov multiplier. If
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var(u)=0, then by a result of Rousseau-Egele (ref. 13, Théorème 2,
Lemme 6) there exists a function w of bounded variation such that
u=w p f−w so that for our particular choice of u one has:

log |fŒ|− log l=w p f−w,

and exponentiating

|fŒ| e−w p f=le−w. (8.11)

Note that exp(w) and exp(−w) are also of bounded variation. To keep the
argument simpler, we will consider only the case when fŒ > 0 and work on
the circle, and leave the details of the case where the sign of fŒ can change
to the reader. In this case we find from (8.11) with Y(x)=>x0 ds e−w(s) the
identities

(Y p f)Œ=fŒe−w p f=le−w=lYŒ,

and therefore Y p f=TlY. So we conclude that if var(u)=0 the required h
exists, and furthermore, computing (8.8) in the coordinate system defined
by Y, we see that less=l.
If var(u) > 0, then, since F of (8.7) is a convex function and

Fœ(0)=var(log |fŒ|− log l), we see that less < l.
Finally, if less < l then clearly f cannot be conjugated to a function

with constant slope, because in that case we would have l=less from (8.8).
This completes the proof of Theorem 8.4 (and also of Corollary 8.5). L

9. EXPANDING MAPS OF SMOOTH MANIFOLDS

The results of ref. 4 have been extended to the multi-dimensional
expanding case in the work of Gundlach and Latushkin. (6) Simplifying their
statement for our purpose, they show the following

Theorem 9.1. The Perron–Frobenius operator for a C2 expanding
map f of a smooth manifoldM, when acting on the space of C1 functions,
has an essential spectral radius given by

sess=exp 1 sup
n ¥ Erg

1hn+F
M

dn(x) log(|det Df(x)|−1)−qn 22 , (9.1)

where the sup is over all ergodic measures of the system, hn is the entropy
of the map w.r.t. n and qn is the smallest Liapunov exponent of Df.13

13 This is obtained from Eq. (1.2) in ref. 6, where the authors allow a cocycle derived from a
bundle automorphism in place of Df.
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Remark. It should be noted that the hypotheses of Theorem 9.1, in
particular the differentiability everywhere imply the existence of a finite
Markov partition for the map. It seems that no general result is known in
the absence of this condition.

Before we use (9.1) in more general contexts, we first show that one
recovers indeed the formulas of Theorem 8.1 when one considers the case
of an expanding map f of the circle. In that case, one takes f=f. For an
invariant ergodic measure n the integral in (9.1) equals

ln=−F dn log |fŒ|.

The unique Liapunov exponent of Df for the invariant ergodic measure n

is

qn=F log |fŒ| dn.

From (9.1) we conclude the that

sess(C1)=exp 1 sup
n ¥ Erg

3hn−2 F log |fŒ| dn42 .

On the other hand, by the variational principle (see Ruelle (14)) we have

sup
n ¥ Erg

3hn−2 F log |fŒ| dn4=P(−2 log |fŒ|).

By (8.7), we have P(−2 log |fŒ|)=F(−1), which is (8.3), as asserted. L

We now consider the more general examples covered by Theorem 9.1
and show that they indeed imply the same kind of lower bound. Note that
by Ruelle’s identity (14) one knows that the spectral radius ssp of the
Perron–Frobenius operator on C0 (or C1 if the transformation is regular
enough, since it equals the maximum positive eigenvalue) is

ssp=exp 1 sup
n ¥ Erg

1hn−F
M

dn(x) log |det Df(x)|22 . (9.2)
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When m is the sole invariant measure which is absolutely continuous
w.r.t. Lebesgue measure we see by the variational principle (14) that the
argument of the exponential is the pressure and hence

ssp=exp 1hm−F
M

dm(x) log |det Df(x)|2

=exp P(−log |det Df|)=exp(0)=1. (9.3)

To get a lower bound on the essential spectral radius, we can plug in a
particular measure in expression (9.1). Using the SRB measure m, we get

sess \ e−qm.

Thus, we get in this case the following corollary from Theorem 9.1:

Corollary 9.2. The essential spectral radius of the Perron–Frobenius
operator for a C2 expanding map f of a smooth manifoldM acting on the
space of C1 functions satisfies

sess \ e−qm,

where qn is the smallest Liapunov exponent of Df.

Question 9.3. The relation with ress remains open.

10. A CONJECTURE AND SOME STEPS TOWARD ITS PROOF

The setting is now that of a smooth compact Riemannian manifoldM
and a uniformly hyperbolic diffeomorphism f which is topologically
mixing on the global attracting set W. We denote by m the unique SRB
measure (see ref. 9). We assume that the smallest Liapunov multiplier
larger than 1 is associated with a space of dimension one.14 Let g1 and g2

14 This means that the smallest positive Liapunov exponent is associated with a space of
dimension one.

be two observables whose regularity will be fixed below. Let A be a
Markov partition of W, which is fine enough so that each atom can be
foliated by local stable and unstable manifolds (see ref. 9). From now on
when we speak of a local stable or unstable leaf, we always mean its
restriction to an atom of the Markov partition. When speaking of a func-
tion on an atom A0 of A, we mean a function on the corresponding rec-
tangle (the hull) on the ambient spaceM.
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We can write the correlation function

Sk=F
M

dm g1 · g2 p fk=F
M

dm g1 p f−k · g2= C
A ¥A

F
A
dm g1 p f−k · g2. (10.1)

We begin by rewriting (10.1) using the disintegration of the SRB
measure with respect to the unstable foliations (see ref. 9). In other words,
there is a measure N on the set Wu of local unstable leaves, and for any
W ¥Wu there is a Hölder continuous positive function GW onW such that

Sk= C
A ¥A

F
A 5W

u
dN(W) F

W
dMW g1 p f−k · g2 ·GW, (10.2)

where dMW is the Riemann measure onW, and where A 5Wu is the subset
of elements of Wu contained in A. We finally define the density h on the
leaves by

h(x)=GW(x)(x). (10.3)

Note that the function h may not be defined on the whole phase space if we
have a non trivial attractor (for example a strange attractor). However one
can interpolate this function to a globally defined (strictly positive) Hölder
continuous function, see, e.g., ref. 12.

Remark. All our problems are related to this density,15 because, as

15Note that this density can be rough even if the invariant measure is the Lebesgue measure.

one can see from (10.2), the effective observable is not g2 but g2 · h, and
therefore smoothness requirements on g2 alone do not suffice to make g2 · h
smooth enough.

Let d be a positive constant whose value may vary with the context
and system. By C1+d we mean the class of C1 functions whose derivative is
d-Hölder continuous.

Assumption 10.1. The foliation Wu by the local manifolds Wu
loc is

a C1+d foliation of C1+d manifolds and the field of one dimensional direc-
tions corresponding to the smallest expanding direction is Hölder continu-
ous. Furthermore, h extends to a Hölder continuous function on M and
C1+d in the unstable directions.

We will need further assumptions on this foliation, see Fig. 8: Denote
by tFx the normalized tangent vector to Wumin(x) at x, where Wumin(x) is the
(one-dimensional) manifold at x corresponding to the slowest expanding
direction. Note that by our assumption it is Hölder in x.
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Fig. 8. The stable foliation W s (of dimension 1) and the unstable foliation Wu (of dimen-
sion 2). InsideWu lie the one-dimensional leaves {w} of the most slowly expanding direction,
forming the family Wumin. A leaf of this family is called w, with a ‘‘coordinate origin’’ xw,
(where s=0), and the tangent vector tFx(w, 0) (here shown at s=0). We also labeled two leaves
W s andWu corresponding to the respective foliationsW s resp.Wu.

Since the field of vectors {tFx} is covariant, we find (see ref. 9) that
there is a Hölder continuous function j (defined onM) such that

Dfx · tFx=ej(x)tFf(x). (10.4)

The function j (whose average is positive) is the ‘‘local expansion rate’’ in
the least unstable direction. Similarly, there is a Hölder continuous differ-
ential 1-form a such that for any x

af(x)Dfx=ej(x)ax, (10.5)

and

a(tF)x — ax(tFx)=1. (10.6)

To make the argument more transparent, we will pursue it for the case
of only 2 positive Liapunov exponents and leave the general case (with
heavier notation) to the reader. We have already fixed a tangent field tF and
a 1-form a which measure what happens in the ‘‘slow’’ unstable direction.
Similarly, we now introduce a tangent field sF and a 1-form b which
describe the other unstable direction. These are unique and Hölder con-
tinuous. The analogs of (10.4)–(10.6) are then
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Dfx · sFx=eg(x)sFf(x),

bf(x)Dfx=eg(x)bx,

b(sF )x — bx(sFx)=1.

Assumption 10.2. There are constants Eg > 0 and Cg for which

C
k−1

j=0
g(f−j(x)) \ C

k−1

j=0
j(f−j(x))+kEg+log Cg, (10.7)

uniformly for sufficiently large k and for all x inM.

This assumption implies a(sF )=b(tF)=0, because the Liapunov mul-
tipliers are different. In other words, the expansion rates g and j are
allowed to fluctuate, but there must remain a ‘‘gap’’ Eg between them
everywhere, and at large times. It would be interesting to understand to
which extent (10.7) could be replaced by a condition on the Liapunov
exponents alone. A stronger statement than (10.7) is to assume g(x) > j(x)
for all x. This is in fact the ‘‘bunching condition,’’ since from the continuity
of j and g and the compactness of the manifold it follows that
g/j > 1+E > 1, uniformly in x.

Remark. This same condition ensures the Hölder continuity of the
vector field tangent to Wumin, i.e., it establishes one of the requirements of
Assumption 10.1.

Remark. The Assumption 10.2 should be compared to the usual
hyperbolicity conditions. (7) In that case, one requires for the stable direc-
tions a bound of the form D(fn)|Es [ ln− (in an adapted metric), and
D(f−n)|Eu [ l−n+ for the unstable directions, and then Eg=log l+− log l− .
So for hyperbolicity, the strong form of (10.7) is being required.

The following result is formulated as a conjecture, since the arguments
toward its proof are only sketched.

Conjecture 10.3. Consider a dynamical system which is uniformly
hyperbolic and has an SRB measure m whose Liapunov multipliers are all
different from 1. Assume it satisfies Assumptions 10.1 and 10.2. For
observables which are piecewise16 C1 in the unstable direction, and

16 In fact, the class of observables we really consider is quite complicated, as it will turn out to
be a complicated subset of C1. See below for a precise description.
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Lipschitz continuous in the stable directions, the essential decorrelation
radius is at least 1/lmin, where lmin is the smallest Liapunov multiplier
greater than 1 (as in Eq. (2.3)). Furthermore, the essential spectral radius is
strictly larger than 1/lmin whenever the system is not smoothly17 conju-

17 For more subtle aspects of the conjugation, see Theorem 8.4.

gated to a system whose differential is a constant function in the direction
corresponding to lmin.

Question 10.4. We expect the conclusions to hold for observable
which are piecewise C1 in all directions.

Sketch of Proof of Conjecture 10.3. We first define the spaces X
and Y for which can prove the assertion of Conjecture 10.3. The space X is
formed by functions obtained as follows: Select an atom A0 of the partition
A. Choose a fixed vector field VA0 which is defined in a neighborhood of A0
and which is tangent at every x ¥ A0 to W

u
loc(x), and which does not vanish

on the hull of A0. This is possible because these manifolds are C1+d in x.
We also assume that this vector field has zero divergence in the unstable
directions.
We further choose a function v which is C2 in the hull (in M) of A0,

vanishing on the stable boundaries of A0.
The observables g2 in X are defined by the equation

g2=
1
h
dv(VA0 ),

where h is defined in (10.3), and is extended to a positive function on the
hull of A0. By our above assumptions, g2 is C1 in the unstable directions
and d-Hölder continuous in the stable directions. As we vary A0 and v over
all possible choices, we obtain a set X0 of functions. Since v ¥ C2, the map
vW dv(VA0 ) has closed kernel, and this induces a topology on the image. If
we divide by h, things do not change, and we have a topology on the func-
tions g2. Varying A0 this construction makes X0 to a Banach space X. (This
space has a topology which is somewhat finer than the C1−d-Hölder topol-
ogy considered above.)
We next construct the space Y. Fix an atom A0. Let j be a function on

the hull of A0 which is C0 along the unstable directions and d-Hölder in the
stable ones. Define g1 by the equation

dg1(tF)x=j(x). (10.8)
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Arguing as in the construction of X, we obtain Y by varying A0 and j, and
inducing the topology.
Finally, the operator U is the Koopman operator of the map f, that is

(Ug)(x)=g(f(x)). (10.9)

Now that the spaces are in place, we can work on (10.2). Take g1 and
g2 in a piece A0 of the partition. We integrate by parts in (10.2) in each W
separately. Since V is divergence-free and v vanishes at the stable boundary
of A0, we obtain

F
W
dMW g1 p f−k · g2 ·GW=F

W
dMW g1 p f−k · dv(V)

=−F
W
dMW d(g1 p f−k)(V) · v

=−F
W
dMW (dg1) p f−k · (Dxf−k(V)) · v.

(10.10)

Decomposing in the unstable directions we get

dg1f −k(x)(Dxf−k(V))=dg1(tF)f−k(x) ·a(V)x · e−;
k−1
j=0 j(f

−j(x))

+dg1(sF )f−k(x) ·b(V)x · e−;
k−1
j=0 g(f

−j(x)). (10.11)

Clearly, Assumption 10.2 implies a uniform bound for (10.11):

dg1f −k(x)(Dxf−k(V))=dg1(tF)f−k(x) ·a(V)x · e−;
k−1
j=0 j(f

−j(x))

+O(e−Egk−;
k−1
j=0 j(f

−j(x))), (10.12)

so that the faster rate g has been eliminated from the discussion. Inserting
in (10.10), we find

Sk=−F dm dg1(tF) p f−k e−S̃kg̃2+O(e−EgZk), (10.13)

(as kQ.), where

S̃k(x)=C
k−1

j=0
ju(f−j(x)), g̃2(x)=

v(x)
h(x)
, Zk=F dm e−S̃k,

by the invariance of the measure, we find

Sk=−F dm g̃1e−Skg̃2 p fk+O(e−EgZk), (10.14)
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where

Sk(x)=C
k−1

j=0
ju(f j(x)), g̃1(x)=dg1(tF)x.

We now use the thermodynamic formalism. (3) Define the Hölder con-
tinuous function ju by ju=−log det Ju where Ju is the Jacobian matrix in
the unstable bundle.18 Recall that under our assumptions there is a

18 In principle, for the case of 2 positive Liapunov exponents, ju can be computed from j, g, tF,
sF, a, and b.

homeomorphism p conjugating the dynamical system f on the attractor to
a subshift S of finite type. The SRB measure m is then transformed to a
Gibbs state c with the Hölder continuous potential ju p p. We get for the
first term on the right hand side of (10.14):

Dk=−F dc g̃1 p pe−Sk p p · g̃2 p p pSk. (10.15)

Define an operatorT by

Tk=e−j
u
p pk̃ pS,

where k is a function on the shift space. Then (10.15) becomes

Dk=−F dc(Tg)k (g̃1 p p) · g̃2 p p. (10.16)

We now apply Theorem 3.3 with XŒ=YŒ=C0 and UŒ=Tg and we find
ress(X, Y, U)=ress(XŒ, YŒ, UŒ) \ sp−ess(XŒ, UŒ). It remains to give a lower
bound on sp−ess(XŒ, UŒ) in terms of the pressure. Using a well-known
device (ref. 2, Lemma 1.3), we can conjugate T to an operator T+ defined
by

T+k=e−j
u
+ p pk̃ pS,

where ju+ p p depends only on the future, i.e., ju+ is constant on the stable
(local) leaves. Note now that when Tg

+ acts on a function k+ which
depends only on the future, it is given by

Tg
+k+=

1
f+

L(f+e−j
u
+ p pk+), (10.17)
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whereL is the Perron–Frobenius operator and f+ satisfies

Lf+=f+.

The eigenvalue above is 1 because we are dealing with an SRB measure,
and the eigenvector is unique. We now see that sp−ess(XŒ, UŒ) is bounded
below by the essential point spectral radius of L exp(−ju+ p p). One now
introduces the pressure

P(ju−h) — lim
kQ.

1
k
log F

M

dm(x) e−;
k−1
j=0 h(f

−j(x)),

where P(ju)=0, because we are dealing with an SRB measure. Then, it
is known (ref. 4 and ref. 2, Theorem 1.5.7) that every point in the open
disk of radius exp(P(2ju)) is an eigenvalue of L exp(−ju+ p p). Since
exp(P(2ju)) \ 1/lmin, the desired inequality follows. This completes the
sketch of the proof of Conjecture 10.3. L

10.1. Sufficient Conditions

We next address the question of sufficient conditions for Assump-
tions 10.1 and 10.2 to hold. A typical such condition is the bunching con-
dition from ref. 9, p. 602, or, the concept of domination developed in ref. 7.
Consider a point x and write Dfx in matrix form

Dfx=1
Ax 0
0 Dx
2 ,

with the blocks corresponding to unstable and stable subspaces, respec-
tively. We define

lx=||Dx ||, mx=(||A
−1
x ||)

−1.

Let nx be the inverse of the Lipschitz constant for f−1:

nx=
1

L(f−1)x
, L(g)x — sup

|x−y| < E

|g(x)−g(y)|
|x−y|

,

with E > 0 some small constant.
One defines the bunching constant by

Bu(f )=inf
x

log mx− log lx

log nx
.
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Theorem 10.5. Let f be a C3 map of the manifold M which gives
rise to an Axiom A system whose unstable manifolds Wu are C2 and the
stable ones, W s, are C1. Assume that the Liapunov multipliers of f satisfy
the following conditions:

(1) The smallest Liapunov multiplier above 1 is lmin and the corre-
sponding dimension is 1.

(2) There are no Liapunov multipliers equal to 1.

(3) The (multidimensional version of ) inequality (10.7) holds.

(4) The bunching constant satisfies

Bu(f ) > 1, (10.18)

and for the inverse map

Bu(f−1) > 1. (10.19)

Then Assumptions 10.1 and 10.2 hold.

Proof. The proofs of all assertions except for the smoothness of h
can be found in ref. 9, Chap. 19, p. 607.
So it remains to prove the differentiability of h. We recall that using a

base point xW on the leaf W, we have for the density of the SRB measure
on the unstable manifoldWu(x) of any x ¥W:

h(x)=D
.

j=0
ej
u(f −j(x))−ju(f −j(xW))

where xW is a reference point chosen once and for all on Wu(x). When
varying x along an unstable leaf, the reference point does not change. Each
term in the above product is differentiable in the unstable direction, and
the regularity properties of h follow easily by checking the convergence of
the series. The Hölder continuity of h follows by standard arguments from
the Hölder continuity of the stable foliation. L

Remark. In the case of skew products of Baladi maps, it is easy to
verify that the local stable manifolds are vertical segments. Because of the
local flatness of the invariant measure of the one dimensional system, it
follows from the explicit expression of the map that the differential is
diagonal. This implies that the field of unstable directions is horizontal
(as well as the local unstable manifolds). This implies that Gw is constant
on the local unstable manifold. By changing if necessary the transverse
measure, we can assume that Gw=1. Therefore, if v is a C2 function with
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compact support contained in an atom of the Markov partition, the
observable g2 defined as above is C1 and we can apply the above technique.
Note that in this case Assumption 10.1 is violated since the map is area
preserving.

10.2. An Example

We construct an example where all the above assumptions are
satisfied. This example is a generalization of the solenoid and can also be
viewed as a skew product. First of all, let p > 6 be an odd integer. Let a be
that solution of the equation

a
2(1+cos(2p/p))−4a+2=0,

which is less than one. Let r=1− a. Note that for p large, we have r % p/p.
Let q be another odd integer with p > q > 4. It is easy to verify that the
spheres of radius r centered at points with polar coordinates
(a, 2kp/p, 2mp/q) with 0 [ k < p and 0 [ m < q are mutually disjoint. We
now define a map f of M=T2×B3 into itself (T2 the two dimensional
torus and B3 the three dimensional unit ball) by

f(J, j, (x, y, z))=(pJ, qj, rx+a cos J cos j, ry+a sin J cos j, rz+a sin j),

where the angles are modulo 2p and we use Cartesian coordinates on B3. It
is left to the reader to verify that because of our choice of a and r the map
is injective. It is obviously a skew product above the map of the torus
(J, j)W (pJ, qj) which is ergodic and mixing for the Lebesgue measure.

Remark. More balls can be packed and also balls with larger radius
using a Peano surface for the position of the centers instead of the sphere
of radius a as above.

The differential of f is given by

Df=R
p 0 0 0 0
0 q 0 0 0
X X r 0 0
X X 0 r 0
X X 0 0 r

S ,
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and

Df−1=R
1/p 0 0 0 0
0 1/q 0 0 0

−X/(rp) −X/(rq) 1/r 0 0
−X/(rp) −X/(rq) 0 1/r 0
−X/(rp) −X/(rq) 0 0 1/r

S ,
where X denotes various quantities of order one.
We now verify the bunching conditions. First of all, the stable bundle

is obviously obtained by setting the first two components of a tangent
vector equal to zero. Therefore, l=r, and also the stable manifold of a
point (J, j, x, y, z) is the set of points with the same angles J and j.
The unstable bundle is not so trivial. As in ref. 9, the unstable bundle

is obtained as a graph above the space of vectors whose last two coordi-
nates are equal to zero. In other words, for every point P ¥ M, there is a
linear operator LP from R2 to R3 such that the unstable subspace at P is
the set

Eu(P)={(z, LPz) | z ¥ R2},

with the canonical identifications. From the equation satisfied by LP (see
ref. 9) it follows easily that

sup
P ¥ M
||LP || [ O(1) q−1.

It then follows that m−1=q−1(1+O(1) q−1). Finally n−1 is at most the sup
norm of Df−1 and we get n−1 [ r−1+O(1) r−1q−1. Recalling that r % pq−1

for large q, we get

lm−1n−2 [ rq−1r−2(1+O(1) q−1) [ p−1(1+O(1) q−1) < 1,

for q large enough, namely the unstable bundle is even C2 (we only require
C1+a for some a > 0).
The stable bundle is obviously infinitely regular but we can check the

bunching condition for the inverse. We obtain l=q−1+O(1) r−1q−2,
m−1=r, n−1=p+O(1). We get

lm−1n−a [ q−1rpa(1+O(1) q−1)=pq−2pa(1+O(1) q−1),

and this is smaller than one for q large enough if a < 2 and p is not much
larger than q. In other words, we can construct examples with the stable
bundle C1+s for any 0 < s < 1.

Liapunov Multipliers and Decay of Correlations in Dynamical Systems 251



Finally we have to check the condition inf g/j > 1. In the above
example this is made simpler by the observation that the set of tangent
vectors with first coordinate equal to zero is covariant. The same is true for
the set of vectors with second coordinate equal to zero. Therefore, the two
invariant bundles are graphs. The largest one is a set of vectors

{(s, 0, u1(P) s, v1(P) s, w1(P) s) | s ¥ R}

and the lowest one

{(0, s, u2(P) s, v2(P) s, w2(P) s) | s ¥ R}.

The six functions ui, vi, wi satisfy the usual coherence equations, and it
follows easily that they are all uniformly bounded by O(1) q−1. It follows
easily that

g \ p+O(1) pq−1 and j [ q+O(1),

and our condition is satisfied if p/q > 1+O(1) q−1 and q is large enough.

APPENDIX

We give here the proof of Lemma 3.4. The l.h.s. of (3.5) is ress. The
r.h.s. will be called r̄ess. We have obviously r̄ess \ ress. To prove the con-
verse inequality, let E > 0. From the definition of ress we can find two sub-
spacesM andMŒ of finite codimension such that

lim sup
nQ.

1 sup
x ¥M
y ¥MŒ

|Oy, UnxP|
||y|| ||x||
21/n < ress+

E

3
.

This implies that there is an integer N such that for any n > N we have

1 sup
x ¥M
y ¥MŒ

|Oy, UnxP|
||y|| ||x||
21/n < ress+

E

2
,

which is equivalent to

sup
x ¥M
y ¥MŒ

|Oy, UnxP|
||y|| ||x||

< 1ress+
E

2
2n.
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Observe that the spaces M̄ and M̄Œ which are the closures ofM andMŒ are
also of finite codimension. Moreover, for each n, we can find x ¥ M̄ and
y ¥ M̄Œ, both of norm 1 such that

|Oy, UnxP|
||y|| ||x||

\ sup
x ¥ M̄
y ¥ M̄Œ

|Oy, UnxP|
||y|| ||x||

−((ress+E)n−(ress+E/2)n).

If x ¨M or y ¨MŒ or both, we can find two sequences (xj) …M and
(yj) …MŒ converging to x and y respectively. Therefore,

|Oy, UnxP|
||y|| ||x||

=lim
jQ.

|Oyj, UnxjP|
||yj || ||xj ||

[ sup
x ¥M
y ¥MŒ

|Oy, UnxP|
||y|| ||x||

.

This implies for any n > N

sup
x ¥ M̄
y ¥ M̄Œ

|Oy, UnxP|
||y|| ||x||

[ (ress+E)n.

Since E is arbitrary, the result follows.
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